

# Commissioning cabling infrastructure for OT networks

- including Single Pair Ethernet and Ethernet-APL™

March 9, 2022

Theo Brillhart
Technology Director
Fluke Electronics

# Storyline

### 2022 ODVA AINDUSTOV COMPETING

#### Outline

- Standards for specification of OT network wiring systems including power delivery
- Network topologies and wiring practices
- Specific commissioning tests for pointto-point links to identify non-compliant cabling and bad connections, as well as routine workmanship issues
- Measurement properties and associated industry standards for physical infrastructure
- Re-purposing legacy cabling for industrial Ethernet

#### Storyline

- With the widespread implementation of Ethernet, it's now possible to apply routine best-practices from IT networking to save time and add value in the industrial space.
- One such practice, cable testing, leads to more reliable operations and less troubleshooting.

### Industrial Protocol Market Shares - 2020



- Fieldbuses are in decline, wireless is stable, Industrial Ethernet share at 64%, up from 59% in the previous year
- EtherNet/IP and Profinet are the dominant Industrial Ethernet variants with 17% market share each





https://hms-networks.com/news-and-insights/news-from-hms/2020/05/29/industrial-network-market-shares-2020-according-to-hms-networks

# Why worry about the Network Physical Layer?

2022 ODVA

- More than half of failures in the network are in the data link and physical layer\*
- Switch hardware will turn over 4X or more over the life of the plant's cabling infrastructure
- 60% of plant floor nodes are on a variant of Ethernet



Today's topic: Effective network planning and testing for faster commissioning, increased uptime and improved OEE



\*source: ISA

### 50% of OT Network Problems

# 2022 ODVA

#### Common defects

- Wrong cable for the application
- Re-terminated on-site (too long)
- Damaged during installation or operation
- Wired incorrectly
- Pair separation causing noise ingress
- Poorly connected shields

#### **Environment makes matters worse**

- Vibration, Flex, Moisture, Oxidation, Temperature, EMI
   High number of intermittent problems (not repeatable)
- A few lost or damaged frames can stop a machine
- Time consuming to diagnose

#### **Problems Reported**





# Standards applied to OT networks

### Applicable Standards

- Information and Communications Technology (ICT)
- TIA/EIA-568 Defines cabling types, distances, connectors, cable system architectures, cable termination, installation requirements and methods of testing installed cable
- Defines the overall premises infrastructure for copper and fiber cabling
- Addresses components of the copper cabling system
- Addresses components of fiber optic cable systems
- The ANSI/TIA-1005 industrial standard is explicitly supported by the 568-cabling standard series



The Telecommunications Industry Association (TIA)





### TIA-1005-A adds to the TIA-568 Series



- M12 D-code connector type
- M12 X-code (published in TIA-1005-A-1 in 2015)
- > 4 connector channel (6 connector)
- Introduction of Coupler/Adaptor
- M.I.C.E ratings

| Office (Clean) to Industrial (Dirty) |                |                |                |
|--------------------------------------|----------------|----------------|----------------|
| Mechanical                           | $M_1$          | $M_2$          | $M_3$          |
| Ingress                              | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> |
| Climatic                             | $C_1$          | C <sub>2</sub> | C <sub>3</sub> |
| Electromagnetic                      | E <sub>1</sub> | E <sub>2</sub> | E <sub>3</sub> |



# TIA Developments for SPE



- TIA-568.5 cabling and component standard
  - minimum requirements for balanced single twisted-pair cabling channels and components (cable, connectors, connecting hardware, and cords) used in commercial buildings
  - also specifies measurements for all transmission parameters.
- TIA-1005 rev.B premises standard for industrial environments
  - drafted this past year and deferred pending SPE additions
  - includes the new End-to-End link type
- TIA-568.7 new! Industrial Single-Pair Ethernet (SPE) project
  - 1st Committee Ballot circulating soon
  - Includes M.I.C.E. requirements for SPE
- TIA-5071 new! Requirements for SPE Field Test Instruments

# Applicable International Standards



- Information and Communications Technology (ICT)
- ISO/IEC 11081 governs all premises types
- ISO/IEC 11081-3 covers the specifics of Industrial premises cabling
- ISO/IEC TR11801-9902 specifies End-to-End link configurations
- ISO/IEC 14763-2 defines planning, installation, and acceptance testing
- ISO/IEC 14763-3 defines Testing of optical fiber cabling
- IEC 61918 Installation of communication networks in industrial premises



# Global Developments for SPE



- ISO/IEC 11081-3 Amd1:2021 Industrial premises cabling
  - Amended to include performance of single-pair Ethernet links
- IEC 61918/AMD1 Installation of communication networks in industrial premises
  - amendment to support all current IEEE BASE-T1 (1000/100/10)
  - forecast publication next year
- IEEE P802.3de Time Synchronization for Point-to-Point Single Pair Ethernet Task Force
- Of particular interest is IEC/IEEE 60802 TSN Profiles for Industrial Automation
  - new project approved Nov-2020, targeting 2023 publication



# Network Infrastructure & Topology

### TIA-1005 Model





#### Structured cabling for industrial premise

Physical infrastructure model for cabling and connectivity design

Flexible and scalable

Defines interconnects (to switch) and testable links/channels

D = Distributor (MDF, IDF, Access layer)

EO = Equipment Outlet

### **Industrial Networks and TIA-1005**





# Why Structured Cabling Is a Best Practice

2022 OD'/A

- Same cabling concept is used with I/O and terminal strips
- Manage the backbone separate from the patch to the controller – through a terminal strip or IFM
- Predictable and eases MACs







# Structured and Point-to-Point Cabling

#### Point-to-Point Cabling

- Stranded cable field-terminated with plugs
- Infrequently tested
- No standard exists to define the measurement method
- If the lights blink, it's assumed it will work!

#### Structured Cabling

- Solid horizontal cable terminated with jacks
- Typically installed and left in place; measured and warranted performance
- Connection to equipment with flexible patch cords







# End-to-End link configurations



#### Plug terminated channels



- Specific industrial use
- 2 to 6 connections
- Total cabling channel
- Added with TIA 1005-B and ISO/IEC 11081-3 Amd1; both in 2021

Standardized point-to-point cabling channel for use where outlet jacks are impractical

# Structured Cabling within Zone Enclosures





Test points (downlink)

Test points (uplink)

# Benefits of Choosing M.I.C.E Rated Components



- Certified to withstand the severity of the associated M.I.C.E element
- When choosing network cabling systems always consider components rated to withstand the worst-case environment for exposure
- Commercial grade network components (M<sub>1</sub>I<sub>1</sub>C<sub>1</sub>E<sub>1</sub>) can also be considered in applicable areas







TIA-1005-A

ISO/IEC 11801

IEC 60603-7

### Shielded Cable for Industrial Environments



- The better the "electrical balance" of a cable the more protection from EMI
- Shielded cabling provides added layer(s) of protection
- Managing interference is strongly tied to proper design and installation (especially grounding & bonding)

Common designations for shielded and unshielded Ethernet cables, per ISO/IEC 11801:



#### Areas addressed in TIA-1005-A:

- Equipotential/Mesh grounding system (conductor sizing)
- Star Grounding System (with ground isolation)
- RC Device Termination (resistor-capacitor)

# **Examples of Shielding Solutions for Ethernet Cabling**







- Review your internal standards for the network physical layer
  - Specify the latest norms for Industrial Ethernet
  - Structure for flexibility, testability and longevity
- Use the M.I.C.E. concept to improve designs and mitigate environmental factors in advance
- Learn and follow controls vendors Industrial Ethernet physical recommendations







# Acceptance Tests for Cabling Infrastructure

### Why test cabling as part of commissioning?



- To be sure that the installed cabling meets the performance you are paying for. An untested cable is a source of uncertainty.
  - Cat 6A Jack + Cat 6A Cable + Cat 6A Installer ≠ Cat 6A performance
- To run faster now and support future applications. Experience has shown that tested networks:
  - Reduce CRC/FCS errors that lead to re-transmissions
  - Reduce New Machine Start-up Time
  - Reduce intermittent Production Down Time
  - Have a longer service life
- To get paid for the job (if you are the installer or machine builder)

Beware of anyone offering to save \$\$ on installation by not testing

# Commissioning & Performance Validation



### Channel Testing with the TIA model

- Channel testing should be done at each cabling subsystem level
- This includes Subsystem 1, and field level 1-0 connections
- Testing is typically be done just prior to commissioning stage in a project
- ANSI/TIA/EIA 568 & 1152-A define testing & field test equipment





### Acceptance tests



#### Engineering Guideline Ethernet-APL™ v1.0

• During the acceptance test the integrity of the cabling should be measured and documented for later use and troubleshooting during the operation of the plant.

#### EtherNet/IP Network Infrastructure Guide – ODVA Pub 35

- Testing is easily done with commercially available hand-held network testers. Special adapters may be necessary for sealed connectors. Testing output includes conformance to all electrical requirements including, but not limited to, attenuation, impedance, return loss, cross-talk, and cable segment length measurements.
- Each cabling segment (consisting of cable and connectors) must be tested to confirm that, after installation, the segments all conform to *The EtherNet/IP* Specification\* for performance. ('The CIP Networks Library, Vol. 1 and 2)

### Acceptance test results



- Simple pass/fail plus wire-map
- Or complete
   frequency sweep
   and guaranteed
   standards
   compliance
- Simple operation
- Wireless cloud storage for results and .pdf reports





# **Measurement Properties**

# What parameters are measured?



- The capacity of a cable to support high speed data is based on measurements of signal and noise
- Continuity testing, or Wire-Map, is not sufficient assurance for even the slowest Ethernet
- Signal Strength, or loss, is measured as attenuation a.k.a. Insertion Loss
- Noise is measured with two parameters, NEXT and Return Loss
- Putting together these measurements we get a Signal to Noise Ratio
- The greater the frequency where we can maintain a positive SNR, the faster and farther we can communicate

# Continuity - RJ45 or M12 D or X (or soon SPE)













# **Most Common Problem: Bad Wire Map**











**Open Pairs** 

Flipped Pair

Short

**Crossed Pairs** 

Split Pair

# Signal Strength – Insertion Loss

#### **Insertion Loss:**

In dB, the signal loss down the cable



#### Signal Loss increased with:

- Length
- Frequency
- Temperature
  - Cables in hot locations may not perform to 100 meters





### Noise – Return Loss

### 2022 ODVA AINDUSTOV COMPETING

#### Return Loss:

In dB, the reflected signal on the same pair



#### Return Loss increases with:

- Defective / damaged cable
- Pairs being separated
- Water in the cable
  - Sometimes the cable isn't bad, it's just the wrong cable for the application



# Noise – NEXT (Near-end Crosstalk)

#### **NEXT**:

In dB, the disturbed signal on an adjacent pair



#### NEXT is increased by:

- Connector geometries and pin configurations
- Defective / damaged cable or connectors
- Untwisting wire-pairs in the connector
- Wrong category of cable or connectors





# SNR = ACR (Attenuation Crosstalk Ratio)



#### Combining I/L and NEXT parameters

In dB, signal to noise ratio of a given pair

#### ACR is a derived parameter

NEXT minus Insertion Loss across frequency
 Better ACR, faster communications

- Category 5e to 100 MHz Supports up to 5GBASE-T
- Category 6 to 250 MHz Can support 10GBASE-T to 55 meters
- Category 6a to 500 MHz Supports 10GBASE-T to 100 meters



### Reminder: ISO & TIA M.I.C.E. Classifications

These can be tested!





### Electromagnetic interference:

### Lost packets – CRC/FCS errors

- May cause excess network latency
- May cause retry/loss of connection
- A few frame errors can cause machines to stop







# Shield Integrity –

- Modern test tools can determine if the shield continuously follows the path of the cable
- If the shield does not follow the path of the cable an open shield will be reported (shown on the right)
- Even when both ends are grounded

(shown here)







# Reject EMI with Well Balanced Links



#### **Balanced Cable**

- Motor or VFD noise is equal across pairs
- Noise is rejected, devices get proper logic levels
  - Packets get through the 1st time

#### **Unbalanced Cable**

- VFD noise NOT equal across pairs
- Devices WILL NOT get proper logic levels
  - FCS and CRC errors. Re-tries and latency
  - Usually <u>intermittent</u>





# TCL – Balance measurement for cabling

2022 ODVA

 Transverse Conversion Loss is the ratio (in dB) of a common-mode voltage measured on a wire pair relative to a differential-mode voltage applied to the same end of the pair. The TCL value shows you how well the impedances of the

pair's conductors are balanced.







# Re-purposing legacy control cabling

Extend the cabling assets you already have

### Cable Reuse?

- Potential for high quality, recent vintage, control cabling to perform well for SPE traffic
- Quickest and most certain way to tell is to test it
  - Certification tests high accuracy, total parametric coverage, highest level of assurance
  - Verification tests less parameters, slightly reduced accuracy, reasonable assurance
- Doesn't mean you have to test every link
  - Statistical sampling is recommended for reuse of large populations
    - \* Given the supplier and age is fairly uniform





# Statistical sampling methods

- ISO/IEC 14763-2 Cabling planning and installation standard
- Test to an equivalent acceptance quality level (AQL) of 0.4% as defined for link populations up to 500,000, per ISO 2859-1

| Installation size    | Sample size            |
|----------------------|------------------------|
| (No. of total links) | (No. of links to test) |
| 3 – 33               | 100%                   |
| 34 – 3,200           | 33                     |
| 3,201 – 35,000       | 126                    |
| 35,001 – 150,000     | 201                    |
| 150,001 – 500,000    | 315                    |





# Topology reuse

- SPE doesn't change the way you install
  - Homerun wiring
  - Fieldbus wiring
- SPE will improve on the fieldbus trend of replacing control boxes with switches and addressing the end-nodes (IP)
- Small field switches can connect directly to edge devices (sensors, actuators, counters)
- Design your wiring on CAD, not in the field
- Faster and easier commissioning therefore faster project completion





# Recap

Summary of key take-aways



- Fieldbuses are in decline; Industrial Ethernet is now more than 60% and SPE/APL are here to wire the remainder
- Review your internal standards for the network physical layer and specify the latest norms for Industrial Ethernet
- Use the MICE concept to improve designs and mitigate environmental factors in advance
- Greater than 50% of problems operating industrial ethernet can be traced to cabling problems
- Assessment tests are a recommended best-practice that can catch most common defects and provide the greatest assurance over the lifetime of the network







#### **THANK YOU**

It has been a great pleasure theo.brillhart@flukenetworks.com

The presenter would like to recognize and thank **Mike Berg**, Sr. Business Development Manager, Panduit Corp. and **Jim Davis**, Regional Marketing Engineer, Fluke Networks for their contributions to much of the source material for this presentation.